凡是过往,皆为序章

0%

大数据_09(Hive基本操作)

本篇总结Hive的交互方式和基本操作命令


Hive 的交互方式

第一种交互方式:./bin/hive

进入 Hive 的安装目录,使用命令 ./bin/hive

1
create database if not exists mytest;

第二种交互方式:使用 sql 语句或者 sql 脚本进行交互

不进入hive的客户端直接执行hive的hql语句

1
./bin/hive -e "create database if not exists mytest;"

或者我们可以将我们的hql语句写成一个sql脚本执行,通过hive -f 来执行我们的sql脚本

1
./bin/hive -f /export/servers/hive.sql

Hive 的基本操作

数据库操作

查询所有数据库:

1
show databases;

创建数据库: 默认指定目录为HDFS上的 /user/hive/warehouse/目录下

1
create database if not exists myhive;

创建数据库并指定位置: 指定目录为 HDFS 的 /myhive

1
create database myhive location '/myhive';

设置数据库键值对信息:

1
create database jianmin with dbproperties ('owner'='thorine','date'='20201120');

查看数据库更多详细信息:

1
desc database extended myhive;

删除数据库:

1
drop database myhive;

​ 强制删除数据库,包含数据库下面的表一起删除:(效果相当于 rm -rf,慎用!!!)

1
drop database myhive cascade;

数据库表的操作

创建表的语法

1
2
3
4
5
6
7
8
9
10
create [external] table [if not exists] table_name (
col_name data_type [comment '字段描述信息']
col_name data_type [comment '字段描述信息'])
[comment '表的描述信息']
[partitioned by (col_name data_type,...)]
[clustered by (col_name,col_name,...)]
[sorted by (col_name [asc|desc],...) into num_buckets buckets]
[row format row_format]
[storted as ....]
[location '指定表的路径']

说明:

  1. create table

    创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。

  2. external

    可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。

  3. comment

    表示注释,默认不能使用中文

  4. partitioned by

    表示使用表分区,一个表可以拥有一个或者多个分区,每一个分区单独存在一个目录下 .

  5. clustered by

    对于每一个表分文件, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。

  6. sorted by

    指定排序字段和排序规则

  7. row format

    指定表文件字段分隔符

  8. storted as

    指定表文件的存储格式, 常用格式:SEQUENCEFILE, TEXTFILE, RCFILE,如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 storted as SEQUENCEFILE。

  9. location

    指定表文件的存储路径

内部表操作

创建表时,如果没有使用external关键字,则该表是内部表(管理表,managed table)。

Hive 建表字段类型

分类 类型 描述 字面量示例
原始类型 BOOLEAN true/false TRUE
TINYINT 1字节的有符号整数, -128~127 1Y
SMALLINT 2个字节的有符号整数,-32768~32767 1S
INT 4个字节的带符号整数 1
BIGINT 8字节带符号整数 1L
FLOAT 4字节单精度浮点数 1.0
DOUBLE 8字节双精度浮点数 1.0
DEICIMAL 任意精度的带符号小数 1.0
STRING 字符串,变长 “a”,’b’
VARCHAR 变长字符串 “a”,’b’
CHAR 固定长度字符串 “a”,’b’
BINARY 字节数组 无法表示
TIMESTAMP 时间戳,毫秒值精度 122327493795
DATE 日期 ‘2016-03-29’
INTERVAL 时间频率间隔
复杂类型 ARRAY 有序的的同类型的集合 array(1,2)
MAP key-value,key必须为原始类型,value可以任意类型 map(‘a’,1,’b’,2)
STRUCT 字段集合,类型可以不同 struct(‘1’,1,1.0), named_stract(‘col1’,’1’,’col2’,1,’clo3’,1.0)
UNION 在有限取值范围内的一个值 create_union(1,’a’,63)

建表入门

1
2
3
4
use myhive;
create table stu(id int,name string);
insert into stu values (1,"zhangsan"); #插入数据
select * from stu;

创建表并指定字段之间的分隔符,默认为 \001

1
create table if not exists stu2(id int ,name string) row format delimited fields terminated by '\t';

创建表并指定表文件的存放路径

1
create table if not exists stu2(id int ,name string) row format delimited fields terminated by '\t' location '/user/stu2';

根据查询结果创建表

1
2
# 通过复制表结构和表内容创建新表
create table stu3 as select * from stu2;

根据已经存在的表结构创建表

1
create table stu4 like stu;

查询表的详细信息

1
desc formatted stu2;

删除表

1
drop table stu;

外部表的操作

外部表因为是指定其他的hdfs路径的数据加载到表当中来,所以hive表会认为自己不完全独占这份数据,所以删除hive表的时候,数据仍然存放在hdfs当中,不会删掉.

内部表和外部表的使用场景

每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。

操作案例

分别创建老师与学生外部表,并向表中加载数据。

创建老师表

1
2
3
4
create external table teacher(t_id string,t_name string) row format delimited fields terminated by '\t';
create external table nsrxx(hydm string,nsr_id string,djzclx_dm string,kydjrq string,xgrq string,label string) row format delimited fields terminated by ',';

create external table zzsfp(fp_nid string,xf_id string,gf_id string,je double,se double,jshj double, kpyf string ,kprq string, zfbz string) row format delimited fields terminated by ',';

创建学生表

1
create external table student (s_id string,s_name string,s_birth string , s_sex string ) row format delimited fields terminated by '\t';

加载数据

  1. 可以直接把指定结构的文件上传到hdfs文件系统的表目录下。

    比如之前的teacher表有两个string字段,分隔符为 \t,我们可以建如下文件,teacher.txt,内容为:

    1
    2
    3
    1	zhangsan
    2 lisi
    3 wangwu # 分割符为 \t

    即可在hive命令下,使用select查询得到如上结果。

  2. 本地加载,可以加载本地的文件读入到hive数据仓库中。

    1
    2
    3
    load data local inpath '/export/servers/hivedatas/student.csv' into table student;

    加载本地路径下的csv文件到student表中。

    我们可以在此验证外部表:通过drop删除表后,select不能查询,但是hdfs系统的数据文件仍在,通过之前的建表语句再次建表,就可查询成功。可见,外部表只是与真实数据的一种映射关系。

  3. 加载数据并覆盖已有数据

    1
    load data local inpath '/export/servers/hivedatas/student.csv' overwrite into table student;
  4. 从hdfs文件系统向表中加载数据(需要提前将数据上传到hdfs文件系统)

    1
    load data inpath '/student.csv' into table student;

分区表的操作

​ 在大数据中,最常用的一种思想就是分治,我们可以把大的文件切割划分成一个个的小的文件,这样每次操作一个小的文件就会很容易了,同样的道理,在hive当中也是支持这种思想的,就是我们可以把大的数据,按照每月,或者天进行切分成一个个的小的文件,存放在不同的文件夹中.

创建分区表语法

1
create table score(s_id string,c_id string, s_score int) partitioned by (month string) row format delimited fields terminated by '\t';

创建一个表带多个分区

1
create table score2 (s_id string,c_id string, s_score int) partitioned by (year string,month string,day string) row format delimited fields terminated by '\t';

加载数据到分区表中

1
load data local inpath '/export/servers/hivedatas/score.csv' into table score partition (month='201806');

加载数据到多分区表中

1
load data local inpath '/export/servers/hivedatas/score.csv' into table score2 partition(year='2018',month='06',day='01');

多分区表联合查询(使用union all)

1
select * from score where month = '201806' union all select * from score where month = '201806';

查看分区

1
show  partitions  score;

添加一个分区

1
alter table score add partition(month='201805');

删除分区

1
alter table score drop partition(month = '201806');

分区表综合练习

需求描述:

现在有一个文件score.csv文件,存放在集群的这个目录下/scoredatas/month=201806,这个文件每天都会生成,存放到对应的日期文件夹下面去,文件别人也需要公用,不能移动。需求,创建hive对应的表,并将数据加载到表中,进行数据统计分析,且删除表之后,数据不能删除

数据准备:

1
2
hdfs dfs -mkdir -p /scoredatas/month=201806
hdfs dfs -put score.csv /scoredatas/month=201806/

创建外部分区表,并指定文件数据存放目录

1
create external table score4(s_id string, c_id string,s_score int) partitioned by (month string) row format delimited fields terminated by '\t' location '/scoredatas';

进行表的修复(建立表与数据文件之间的一个关系映射)

1
msck repair table score4;

之后便可select查询该表验证结果。

分桶表操作

分桶,就是将数据按照指定的字段进行划分到多个文件当中去,分桶就是MapReduce中的分区.

开启 Hive 的分桶功能

1
set hive.enforce.bucketing=true;

设置 Reduce 个数

1
set mapreduce.job.reduces=3;

创建分桶表

1
create table course (c_id string,c_name string,t_id string) clustered by(c_id) into 3 buckets row format delimited fields terminated by '\t';

创建普通表

1
create table course_common (c_id string,c_name string,t_id string) row format delimited fields terminated by '\t';

普通表中加载数据

1
load data local inpath '/export/servers/hivedatas/course.csv' into table course_common;

通过insert overwrite给桶表中加载数据

1
insert overwrite table course select * from course_common cluster by(c_id);

修改表结构

重命名

1
alter  table  old_table_name  rename  to  new_table_name;

把表score4修改成score5

1
alter table score4 rename to score5;

增加/修改列信息:

  • 查询表结构
1
desc score5;
  • 添加列
1
alter table score5 add columns (mycol string, mysco int);
  • 更新列
1
alter table score5 change column mysco mysconew int;
  • 删除表
1
drop table score5;

Hive表中加载数据

直接向分区表中插入数据

1
2
create table score3 like score;
insert into table score3 partition(month ='201807') values ('001','002','100');

通过load方式加载数据

1
load data local inpath '/export/servers/hivedatas/score.csv' overwrite into table score partition(month='201806');

通过查询方式加载数据

1
2
create table score4 like score;
insert overwrite table score4 partition(month = '201806') select s_id,c_id,s_score from score;
~感谢你请我吃糖果~
-------------本文结束,感谢您的阅读,欢迎评论留言!-------------